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Formal Languages

◦ Σ∗ set of all finite strings over Σ
◦ empty string ε ∈ Σ∗, ε 6∈ Σ
◦ ∗-language M ⊆ Σ∗

◦ prefix operator pre s := { t| ∃ r : tr = s }
◦ note that preM = { t | ∃ r : tr ∈ M }
◦ M is closed :⇔ M = preM

A natural domain for the interpretation of
liveness properties are ω-languages, i.e., sets
of infinite-length strings w ∈ Σω .

If there are no deadlocks, we may use

M := {w ∈ Σω | prew ⊆ preM }
to model the process w.r.t. infinite time.

If, in addition, there are no livelocks, we may
consider

L := {w ∈ Σω | ‖(prew) ∩ L‖ =∞}.
to model the process w.r.t. infinite time.

Control patterns
Γ := { γ ⊆ Σ |Σuc ⊆ γ }

Projection

◦ natural projection po : Σ∗ → Σ∗o
read “removes all symbols not from Σo”
◦ for languages take pint-wise images
◦ set-valued inverse p−1

o : Σ∗o  Σ∗

read “arbitrarilly inserts symbols from Σuo”

Language Quotient
K/E := { s | ∃ t ∈ E : st ∈ K } .

Language Convergence

K finitely converges to E if there exists a
uniform bound k such that every s ∈ K can
be decomposed

s = vw , w ∈ E , and |v | ≤ k.

This is written E ⇐ K .

For not-uniformly bounded convergence,
one refers to the respective ω-languages and
requires

limK ⊆ lim(Σ∗E) .
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A discrete-event system is a model of a process
. . . with a particular focus on the ocurrence of events

◦ finite set Σ of symbols σ ∈ Σ

◦ only event ordering is regarded relevant (logic time)
◦ within finite physical time a finite sequence s ∈ Σ∗ is generated
◦ set M ⊆ Σ∗ of sequences that can be generated
◦ write preM to emphasise that M = preM (local behaviour)

process
s ∈ Σ∗

time

Σ

1 2 3 4 5

A closed language preM ⊆ Σ∗ is a discrete-event system.

Literature: Ramadge and Wonham 1989
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Properties

◦ safety – bad things never happen
with preE ⊆ Σ∗, require

preM ⊆ preE

◦ liveness – good things do happen
free of deadlocks

(∀ s ∈ preM )(∃σ ∈ Σ )[ sσ ∈ preM ]

free of livelocks w.r.t. L ⊆ preM
(∀ s ∈ preM )(∃ t ∈ Σ∗ )[ st ∈ L ∩ preM ]

For systems with liveness properties:

A language L ⊆ Σ∗ is a discrete-event system.
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W.r.t. the partitioning Σ = Σc ∪̇Σuc = Σo ∪̇Σuo consider a plant
L ⊆ Σ∗ and a controller H in closed-loop configuration:

controller H plant L

po s

γ

◦ at any time, the controller is provided po s ∈ Σ∗o where s ∈ Σ∗ is
the sequence generated so far;

◦ in turn, the controller applies a control pattern γ ∈ Γ of enabled
events, where Σuc ⊆ γ;

◦ represent the controller as a discrete-event system
H ⊆ Σ∗ .

i.e. γ = {σ | sσ ∈ H }.

Literature: Ramadge and Wonham 1987, Lin and Wonham 1988
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Def. A controller H ⊆ Σ∗ is admissible w.r.t. the plant L ⊆ Σ∗, if

[H0] H = preH ,

[H1] (preH)Σuc ⊆ preH ,

[H2] preH = p−1
o po preH (. . . assuming Σc ⊆ Σo),

[H3] (pre L) ∩ (preH) does not deadlock, and

[H4] (pre L) ∩ (preH) = pre (L ∩ H) .

Then K := L ∩ H represents the cosed-loop behaviour. �

Structural requirement [H4&5]:
liveness properties of the plant shall be retained.

Literature: Lin and Wonham 1988, Kumar et al 1992, Moor et al 2012
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Thm [SCT]: For a plant L ⊆ Σ∗ and an admissible controller
H ⊆ Σ∗ let K = L ∩ H . Then

[K0] K is relatively closed w.r.t. L,

[K1] K is controllable w.r.t. L,

[K2] K prefix-normal w.r.t. L, and

[K3] K does not deadlock.

Vice versa, if K satisfies [K0]-[K3], then there exists an admissible
controller H such that K = L ∩ H . �

◦ K is rel. closed w.r.t. L iff
K = (preK) ∩ L

◦ K is controllable w.r.t. L iff
((preK)Σuc) ∩ (pre L) ⊆ preK

◦ K is prefix normal w.r.t. L iff
preK = (p−1

o po preK) ∩ (pre L)

◦ K does not deadlock iff
∀ s ∈ preK ∃σ ∈ Σ: sσ ∈ preK

Literature: Lin and Wonham 1988, Kumar et al 1992, Moor et al 2012
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Control Problem: given (L,E ) with plant L ⊆ Σ∗ and a
specification E ⊆ Σ∗ construct an admissible controller H ⊆ Σ∗

such that
K := L ∩ H ⊆ E .

Solution: all closed-loop properties are retained under arbitraty
union; thus

K ↑ = sup{K ⊆ L ∩ E |K satisfies [K0]–[K3] }

itself satisfies [K0]–[K3] and is used to extract a mximally permissive
controller.

Note: E can be substituted by a closed language without affecting
solutions – it is effectivly a pure safety specification. This becomes a
different story when considering ω-languages.

Literature: Lin and Wonham 1988, Kumar et al 1992, Moor et al 2012
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Fault-Tolerant Control
◦ a fault is a sudden change of behaviour
◦ passive approach: have a single controller that can handle
pre-fault and post-fault behaviour (robust control)
◦ active approach: detect the fault and switch to another controller
(adaptive control)

Core challenge for continuous control systems: switching of plant
and controller dynamics and transient behaviour. However, for
discrete-event systems:

Sudden change of behaviour and switching in the control
scheme are the very nature of discrete-event systems.
Hence, fault-tolerant control can be synthesised by the
same methods as nominal control [??]

Literature: Blanke et al 2006
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Naive approach to fault-tolerant control:
◦ nominal plant Ln ⊆ Σ∗n

◦ fault event f 6∈ Σn, unctrl. and unobs., let Σf := Σn ∪̇ {f}

◦ degraded post-fault behaviour Ld ⊆ (pre Ln)fΣ∗f

◦ fault-accommodating model Lf := Ln ∪ Ld

Ln

Ld

f

ǫ

s

(pre Ln) ∩ (pre Ld)

t

logic time

Literature: Wittmann et al 2012, Moor 2016
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Algebraic consequence:

Prop. The prerequisite Ld ⊆ (pre Ln)fΣ∗f implies that:
Ld ∩ Σ∗n = ∅ , (pre Ld) ∩ Σ∗n ⊂ pre Ln ,
Lf ∩ Σ∗n = Ln , (pre Lf) ∩ Σ∗n = pre Ln .

From the last line we obtain (pre Lf) ∩ Σ∗n = pre Ln = pre (Lf ∩ Σ∗n).
I.e., the fault-accommodating model and the hypothesis the fault
not to occur are non-conflicting. More general we require the fault to
never become an inevetible consequence of the past event sequence.

Def. The fault-accommodating model Lf is well-posed, if
∀ s ∈ pre Lf ∃σ ∈ Σn : sσ ∈ pre Lf ,
∀ s ∈ pre Lf ∃ t ∈ Σ∗n : st ∈ Lf .

Literature: Wittmann et al 2012, Moor 2016
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Naive approach to fault-tolerant control (cnt.)

◦ fault-accommodating specs. Ef := En ∪ Ed, same spirit as Lf

◦ invoke std. synthesis procedure for (Lf,Ef)

◦ obtain a controller Hf with sup. closed loop K ↑f = Lf ∩ Hf

However: we may encounter
∃ s ∈ preKf ∀ σ ∈ Σf : sσ ∈ preKf ⇒ σ = f ,
∃ s ∈ preKf ∀ t ∈ Σ∗f : st ∈ Kf ⇒ t 6∈ Σ∗n ,

This is not desirable – impose additional requirements:

[K4] ∀ s ∈ pre Lf ∃σ ∈ Σn : sσ ∈ pre Lf ,
[K5] ∀ s ∈ pre Lf ∃ t ∈ Σ∗n : st ∈ Lf .
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Naive approach to fault-tolerant control (cnt.)

◦ fault-accommodating specs. Ef := En ∪ Ed, same spirit as Lf

◦ invoke synthesis procedure for (Lf,Ef) incl. [K4] and [K5]

◦ obtain a controller Hf with sup. closed loop K ↑f = Lf ∩ Hf

Thm. [N-FTC]: Consider a persistent fault, Lf ⊆ Σ∗n{ε, f}Σ∗n.
Then there exists a controller Hf with Kf = Lf ∩ Hf that is
admissible to both Lf and Ln if and only if Kf satiesfies [K0]-[K5].

◦ diagnosability not required, passive fault-tolerant control

◦ in general, we have Ln ∩ Hf ⊆ K ↑n — may compute K ↑n and test
for equality.

Literature: Moor 2016
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Active fault-tolerant control

controller Hn plant Lf

controller Hd diagnoser

f

◦ require the fault to be diagnosable, denote D ⊆ Ld the strings
corresponding to f-certain diagnoser states

Diagnosis of DES (Sampath et al 1995)

◦ diagnoser: observer automaton with dedicated state labels

◦ f-certain state: state in which the fault must have occured
some time ago

◦ diagnosability: require the plant to after the fault attain an
f-certain state after a bounded number of transitions.

Literature: Paoli et al 2005, 2008, 2011
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Active fault-tolerant control

controller Hn plant Lf

controller Hd diagnoser

f

◦ require the fault to be diagnosable, denote D ⊆ Ld the strings
corresponding to f-certain diagnoser states
◦ require/test that the post-fault-pre-detection behaviour satisfies a
safety specification (safe diagnosibility)
◦ design Hd to take over Hn when the plant first enters D
◦ note: nominal pre-fault behaviour is guaranteed
◦ option: synthesise Hd online once the fault has been diagnosed

Literature: Paoli et al 2005, 2008, 2011
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◦ associate Hn ← [ p−1
n Hn and consider the local-closed loop under

nominal control Kloc := (pre Lf) ∩ Hn

◦ safe diagnosability condition:
D := { s ∈ Σ∗f |Kloc ∩ (p−1

o po s) ⊆ Σ∗nfΣ
∗
f } ,

Kloc ∩ Σ∗nfΣ
k
f ⊆ D for some k ∈ N ,

T := { s ∈ Kloc | (pre s) ∩ D = s } ⊆ Ephi ;

Ln

Ld

ǫ

s

(pre Ln) ∩ Hn

(pre Ld) ∩ Hn

f

logic time

Literature: Paoli et al 2005, 2008, 2011
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◦ local post-fault-detection behaviour (pre Ld) ∩ (TΣ∗n)

◦ post-fault-detection controller Hd requirements:
[A1] admissible w.r.t. Ld ∩ (TΣ∗n)

[A2] enforces post fault specs. Ld ∩ (TΣ∗n) ∩ Hd ⊆ Ed

[A3] passive before fault-detection T ⊆ (pre Ld) ∩ (TΣ∗n) ∩ Hd

Ln

Ld

ǫ

sT

(pre Ld) ∩ (TΣ
∗
f ) ∩ Hd

f

logic time

Literature: Paoli et al 2005, 2008, 2011
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◦ local post-fault-detection behaviour (pre Ld) ∩ (TΣ∗n)

◦ post-fault-detection controller Hd requirements:
[A1] admissible w.r.t. Ld ∩ (TΣ∗n)

[A2] enforces post fault specs. Ld ∩ (TΣ∗n) ∩ Hd ⊆ Ed

[A3] passive before fault-detection T ⊆ (pre Ld) ∩ (TΣ∗n) ∩ Hd

◦ require that Ed and Ephi relate by
(preT ) ∩ (Σ∗nfΣ

∗
n) ⊆ Ed ⊆ Ephi

◦ post-fault-detection controller Hd, synthesis:
– for [A1] and [A2] use std. procedure on (Ld ∩ (TΣ∗n), Ed)

– then test for [A3]
– if test fails, no solution exists

Literature: Paoli et al 2005, 2008, 2011
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Re-interpret active FTC as naive FTC

◦ formally construct overall controller Hf:
Hf := {ε} ∪ { sσ ∈ Hn | s 6∈ C } ∪ { sσ ∈ Hd | s ∈ C } ,
C := (D ∩ Hn ∩ Hd ) ∩ Σ∗f .

Thm. [A-FTC]: Given a fault-accomodating model Lf and a
nominal controller Hn admissible to Ln = Lf ∩ Σ∗n, assume that
local closed loop Kloc := (pre Lf) ∩ Hn is safe diagnosable. If a
post-fault-detection controller Hd satisfies conditions [A1]–[A3],
then the overall controller Hf defined above is admissible to both
Lf and Ln with Ln ∩ Hf = Ln ∩ Hn.

◦ by Thm. [N-FTC] the conclusion is equivalent to Kf being a
closed-loop behaviour achievable by naive FTC.

Literature: Paoli et al 2005, 2008, 2011, Moor 2016
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Post-Fault Recovery: safety

Def. [K6]: A closed loop Kf = Kn ∪̇Kd is weakly recovering if
there exists a uniform bound k such that for all s, t, |t| ≥ k with

s ∈ (preKf) ∩ (Σ∗nfΣ
∗
n) and st ∈ preKf

there exists u ∈ preKn, v ∈ pre t, |v | ≤ k with
Kf/sv ⊆ Kn/u .

◦ synthesis problem: given Lf = Ln ∪ Ld and Ef, compute an
admissible controller Hf such that the closed loop Kf satisfies [K6].

◦ the property is not retained under union; synthesis procedure
exists for Σo = Σ

Kd

ǫ

s

Kn

st

u

sv

≤ k

f

logic time

Literature: Wen et al 2008
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Post-Fault Recovery: safety

Def. [K6]: A closed loop Kf = Kn ∪̇Kd is weakly recovering if
there exists a uniform bound k such that for all s, t, |t| ≥ k with

s ∈ (preKf) ∩ (Σ∗nfΣ
∗
n) and st ∈ preKf

there exists u ∈ preKn, v ∈ pre t, |v | ≤ k with
Kf/sv ⊆ Kn/u .

◦ synthesis problem: given Lf = Ln ∪ Ld and Ef, compute an
admissible controller Hf such that the closed loop Kf satisfies [K6].

◦ the property is not retained under union; synthesis procedure
exists for Σo = Σ

Literature: Wen et al 2008
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Post-Fault Recovery: safety
◦Weakly recovering [K6] implies conditional finite convergence:

[K6’] Kn/Σ∗ ⇐ Kf/(Σ∗nf)

◦ formally generalise to:
[K6”] Ef ⇐ Kf/(Σ∗nf)

◦ synthesis problem: given Lf = Ln ∪ Ld and Ef, compute an
admissible controller Hf such that the closed loop Kf satisfies
[K6’]/[K6”].

◦ neither [K6”] nor [K6’] are retained under union; synthesis
procedure exists.

Literature: Sülek at al 2014, Willner et al 1994, Schmidt et al 2014, Wen et al 2018
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Post-Fault Recovery: liveness

Def. [K7]: A closed loop Kf = Kn ∪̇Kd is xxxxxxweakly recovering if
there exists a uniform bound k such that for all s, t, |t| ≥ k with

s ∈ (preKf) ∩ (Σ∗nfΣ
∗
n) and st ∈ preKf

there exists u ∈ preKn, v ∈ pre t, |v | ≤ k with
Kf/sv =Kn/u .

◦ synthesis problem: given Lf = Ln ∪ Ld and Ef, compute an
admissible controller Hf such that the closed loop Kf satisfies [K7].

◦ the property is not retained under union; synthesis procedure
exists for Σo = Σ

Kd

ǫ

s

Kn

st

u

sv

≤ k

f

logic time

Literature: Wen et al 2014
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Post-Fault Recovery: liveness
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s ∈ (preKf) ∩ (Σ∗nfΣ
∗
n) and st ∈ preKf

there exists u ∈ preKn, v ∈ pre t, |v | ≤ k with
Kf/sv =Kn/u .

◦ synthesis problem: given Lf = Ln ∪ Ld and Ef, compute an
admissible controller Hf such that the closed loop Kf satisfies [K7].
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exists for Σo = Σ
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Fault Hiding

Given Lf = Ln ∪ Ld, Ef = En ∪ Ed, and a solution Hn to (Ln,En)

fault-tolerant cntrl.

contr. Hv plant Lfreconf. R
f

◦ disconnect nominal controller, i.e., Hv = h(Hn) ⊆ Σ∗v with
Σv ∩ Σf = ∅, h bijective and applied per event.

◦ synthesise reconfiguration dynamics R ⊆ (Σv ∪Σo)∗ to re-connect

◦ do so by interpreting Hv ‖ Lf as plant and use std. procedures on
adapted language inclusion specification, extract R from K

◦ obtain an overall fault-tolerant controller from Hv and R

Literature: Wittmann et al 2013



Th. Moor: FTC/SCT in Terms of Formal Languages — Fault-Hiding Approach 28/28

◦ when using a minimal restrictive solution H↑n resp. H↑v ‖ Lf for the
design, and if the closed loop K ↑ satisfies [K0]-[K3] and
additionally

[K8] ( ∀ s ∈ preK )[ ((pv s)h(Σuc)) ∩ (pre h(Ln)) 6= ∅
⇒ s(Σ− h(Σc))∗h(Σuc) ∩ (preK ) 6= ∅ ]

then the corresponding R is admissible to Hv ‖ Lf for any nominal
controller Hn that solves (Ln,En).

◦ [K8] is retained under union, synthesis procedures are available.

Note: Nominal controller does not need to be known.

contr. ??? plant Lfreconf. R
f

Literature: Wittmann et al 2013
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Summary

Fault-tolerant supervisory control is addressed by the
recent literature in various ways, including passive and
active approaches, post-fault recovery and fault-hiding.

Conclusions

◦ switching is addressed by the common modelling framework —
any method for fault-tolerant supervisory control should be
interpretable within this framework

◦ additional features of individual approaches amount to additional
closed-loop properties — and novel to synthesis problems

◦ insisting in uniform bounds for diagnosibility and language
convergence may be too strict for particular applications —
discussion in terms of ω-languages may turn out beneficial
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