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Introduction and Motivation
Discrete Event (Dynamic) System (DES or DEDS)

Event-driven dynamics [Cassandras and Lafortune, 2008]
1 Numerous digital/cyberphysical systems are naturally event-driven

(e.g., asynchronous distributed systems) or even exclusively
event-driven (e.g., communication protocols)

2 Event-driven sampling may be a design choice (e.g., [Branicky
and Phillips, 2000], [Astrom and Bernhardsson, 2002], [Tabuada,
2007], [Dimarogonas et al, 2012], [Cassandras, 2015])

Discrete state space (typically)
1 Finite (e.g., finite automata) or infinite (e.g., unbounded Petri nets)
2 Extensions to timed/stochastic/hybrid models (e.g., hybrid

automata, continuous Petri nets)
3 Diverse levels of abstraction: Logical, stochastic, hierarchical, ...
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Introduction and Motivation
Application Domains ("Classical")

“Classical" Applications: Manufacturing systems; baggage handling
systems; paper handling systems (copiers, printers, etc.); heating,
ventilation and air conditioning units

Main characteristics and challenges: Model-based (human designed),
few (e.g., expensive) or unreliable sensors, different/complex modes of
operation (e.g., monitoring vs testing), complexity of verification process
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Introduction and Motivation
Emerging Application Domains

Emerging Applications: Distributed (cyber-physical) systems, such as
autonomous vehicles and automated highway systems; microgrids and
smart grids; smart devices and buildings

New Features and Characteristics:
Distributivity/Modularity: Multiple interacting (sub)systems, local
observers and controllers

Processing: Local vs global, exchange of information

Optimization: Collaborative vs antagonistic strategies

Communication: Network delays, packet drops, synchronization

Privacy and Security Challenges:
Shared (non-dedicated) communication infrastructures

Compromised components (e.g., sensors or actuators)

Curious or malicious actors (e.g., intruders)
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Opacity in Discrete Event Systems
General (Behavioral) Description

Certain critical system behavior deemed secret [Bryans et al., 2004]
(described by predicate that evaluates to true or false)

Curious observers (or passive intruders) are assumed to have
1 Knowledge of a (possibly partial) model of the system

2 Partial access to activity (observations) generated by the system

Curious observers do not interfere with system operation in other ways
(subsequent workshop talks address the effects of malicious intruders)

Opacity requires the secret system behavior to remain opaque
(uncertain) to passive intruders, under all system behavior

Opaque system implies that the curious observer

never establishes that the predicate describing secret behavior is true

Probabilistic extensions (more generally, ways of quantifying opacity)
are also possible [Saboori and CNH, 2014]
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Opacity in Discrete Event Systems
Motivating Examples

Motivating applications include assessment of

Monitoring limitations in sensor networks
[Dubreil et al., 2010], [Saboori and CNH, 2011]

Encryption mechanisms based on pseudorandom
generators
[Saboori, 2011]

Protocols for privacy-preserving location-based services
[Wu et al., 2014]

Several existing security notions, such as anonymity and
noninterference, can also be described using opacity
formulations
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Motivating Example I
Monitoring Limitations in Sensor Networks

Vehicle moves on a
two-dimensional grid in which a
number of sensors is deployed

State of the vehicle corresponds
to cell number of its location⇒
Vehicle trajectory corresponds to
state trajectory

Kinematic Model: Automaton
describing limitations on vehicle
movements due to physical
obstacles on the grid or other
logical constraints or rules

Enhanced Kinematic Model:
Assign observation σ to all
transitions that end in a cell
covered by sensor σ
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Motivating Example I
Examples of Privacy/Security Concerns

Can the origin of the vehicle be identified via observations from the
sensor network (for all or some trajectories)?

For such trajectories, how long (in the best/worst case) does it take for
the sensor network to identify the origin?

How fast does the number of consistent trajectories increase in terms of
the length of the observation sequence?

What sensor placement results in the tightest estimate of the vehicle
state (either at present or at some point in the past) in the shortest time?

What extra restrictions can we impose on vehicle movements in order to
improve or impair our ability to localize the vehicle (i.e., perform state
estimation) without changing sensor configuration?

Assuming that some statistics about vehicle movements are known a
priori, what is the most probable state of the vehicle along the
observation?
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Motivating Example II
Limitations of Encryption using Pseudorandom Generators

Stream cipher: combines
(usually through an XOR
operation) plain text bits with a
stream of keys

LFSR-based stream cipher:
Linear Feedback Shift Register
creates a pseudorandom stream
of keys

An intruder can insert input bits
and observe the encrypted
message in an effort to obtain
information about the system
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Motivating Example II
Examples of Privacy/Security Concerns

Is there an initial key (state) for which there exists an input sequence
that reveals that key?

If there is such a key, how long does it take for the intruder to detect it?

Is there a (bad) sequence of key resets that aids the intruder in
identifying the current (or previous) key faster?

Assuming that some statistics about the initial key are known, what
input sequence will reveal the key with the highest probability?
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Observability Related Challenges
DES Models and Property Verification [CNH, 2020]

Common DES models:

Finite automata, both deterministic and nondeterministic

Petri nets, both bounded and unbounded

Extensions: Timed models, stochastic models, hybrid models, ...
Diverse levels of abstraction: Logical, stochastic, hierarchical, ...

Sources of Uncertainty

Common: initial state, partial event observation, nondeterminism

Not-so-common: loss, delay, corruption of observations

Opacity Specific Challenges:
1 Online algorithms for state estimation and event inference
2 Verification and complexity of opacity notions of interest
3 Automated tools for verifying/enforcing properties of interest

Recent book: CNH, Estimation and Inference in Discrete Event Systems: A
Model-Based Approach with Finite Automata, Springer, 2020
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Talk Outline

Introduction and Motivation
1 Opacity as a privacy notion
2 Motivating examples

Observation Models; Language-Based and State-Based Opacity

Current-State Opacity and its Verification
1 Current-state estimation
2 Formal definition of current-state opacity
3 Verification using observer (current-state estimator)

Initial-State Opacity and its Verification
1 Initial-state estimation
2 Formal definition of initial-state opacity
3 Verification using initial-state estimator

Other State-Based Notions of Opacity

Ongoing Research and Challenges
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Nondeterministic Finite Automaton (NFA)
Notation

G = (X ,Σ, δ,X0), where

X is the set of states

Σ is the set of events

δ : X × Σ→ 2X

nondeterministic transitions
(Deterministic if |δ(x , σ)| ≤ 1
for all x ∈ X and σ ∈ Σ)

X0 ⊆ X is the set of possible
initial states

Example NFA

X = {1, 2, 3} and Σ = {α, β}
X0 = {1, 2, 3}
For s = αββ, we have
δ({1, 3}, s) = {2, 3}

32

1

α

β

β

α

α

Sequence of events: s = σi1σi2 ...σik ∈ Σ∗ (of length |s| = k )

Behavior of G (language L(G)): L(G) := {s ∈ Σ∗ | ∃x0 ∈ X0{δ(x0, s) 6= ∅}}

Extended δ function: δ(X ′, σ) := ∪x′∈X ′δ(x ′, σ) for X ′ ⊆ X , σ ∈ Σ
δ(x , σs) := δ(δ(x , σ), s) for x ∈ X , s ∈ Σ∗, σ ∈ Σ
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Observability Limitations
Unobservable Events (Σu) and Observable Events (Σo)

Unobservable events Σu , Σu ⊂ Σ: Events whose occurrence goes
unrecorded; remaining events Σo = Σ \ Σu are observable

Natural projection PΣo : Σ∗ → Σ∗o (denoted by P when Σo is implied)
Defined recursively ∀σ ∈ Σ, s ∈ Σ∗

P(ε) = ε and P(σs) = P(σ)P(s)

where

P(σ) =

{
σ, if σ ∈ Σo

ε, otherwise

Natural projection “erases" all unobservable events in s

Event sequences compatible with sequence of observations ω ∈ Σ∗o :

P−1(ω) = {s ∈ L(G) | P(s) = ω} (inverse projection, “explanations")

Generalizations (not addressed here):
1. Different events could generate identical observations (“labels")
2. Additional information (e.g., probabilistic information, time stamps)
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Notions of Opacity
Language-Based Opacity [Lin, 2011]

Given NFA G = (X ,Σ, δ,X0) with set of observable events Σo (Σo ⊆ Σ)

Curious observer with
(i) knowledge of system model G and
(ii) access to the sequence of observations ω = P(s) (generated in
response to sequence of events s, s ∈ L(G), acting in the system)

Language-Based Opacity: G is said to be opaque with respect to the
secret language LS (LS ⊂ L(G)) if

∀s ∈ LS , we can find t ∈ (L(G) \ LS), such that P(s) = P(t)

Nomeclature: LS is the secret language, whereas LNS = L(G) \ LS is the
non-secret language; intuitively, the curious observer should never
know that the system has executed a secret sequence of events

Extensions:
Arbitrary non-secret language LNS (not necessarily L(G) \ LS)

Weak language-based opacity: we can find s ∈ LS and
t ∈ (L(G) \ LS), such that P(s) = P(t)
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Notions of Opacity
State-Based Opacity [Saboori and CNH, 2007; 2009; 2011; 2013]

Given NFA G = (X ,Σ, δ,X0) with set of observable events Σo (Σo ⊆ Σ)

Curious observer with
(i) knowledge of system model G and
(ii) access to the sequence of observations ω = P(s) (generated in
response to sequence of events s, s ∈ L(G), acting in the system)

State-Based Opacity: G is said to be (current-state) opaque with
respect to the set of secret states S (S ⊂ X ) if

∀s ∈ L(G), we can find t ∈ P−1(s) such that δ(X0, t) ∩ (X \ S) 6= ∅

Nomeclature: S is the set of secret states, whereas NS = X \ S is the
set of non-secret states; intuitively, the curious observer should never
know with certainty that the system is in a secret state

Extensions:
Arbitrary set of non-secret states NS (not necessarily X \ S)

Weak state-based opacity: there exists s ∈ LS , for which we can
find t ∈ P−1(s) such that δ(X0, t) ∩ (X − S) 6= ∅
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State-Based Opacity
Variations Based on Point in Time

Current-state opacity: Entrance of
current state to set of secret states S
remains opaque

Initial-state opacity: Membership of initial
state to set of secret states S0 remains
opaque during system operation

Other opacity notions allow refinement of
the observer estimate based on a
subsequently observed sequence of
observations (smoothing); these include
K -step opacity, infinite-step opacity, etc.

Key challenge: To verify (strong) opacity,
we need to check these conditions for all
possible sequences of observations
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X = {1, 2, 3, 4}
State trajectories matching a
sequence of 3 observations

System is not initial-state opaque
for S0 = {2, 4}
System is not 2-step state
opaque for S = {1, 3}
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Verification of State-Based Opacity
State Estimator Constructions [CNH, 2020]

Given NFA G = (X ,Σ, δ,X0) with set of observable events Σo (Σo ⊆ Σ)
and a curious observer

For regular languages, language-based and state-based opacity are
equivalent within polynomial reduction [Wu and Lafortune, 2013]

Verification of state-based opacity relies on different estimators

Current-state estimator (or observer)

Initial-state estimator

K -step delayed estimator

Two-way observer

Complexity depends on estimator complexity
(typically, at least exponential in the size of G)

More efficient verification may be possible in some cases
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Talk Outline

Introduction and Motivation
1 Opacity as a privacy notion
2 Motivating examples

Observation Models; Language-Based and State-Based Opacity

Current-State Opacity and its Verification
1 Current-state estimation
2 Formal definition of current-state opacity
3 Verification using observer (current-state estimator)

Initial-State Opacity and its Verification
1 Initial-state estimation
2 Formal definition of initial-state opacity
3 Verification using initial-state estimator

Other State-Based Notions of Opacity

Ongoing Research and Challenges
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Current State Estimation
Example of Recursive Computation of Possible Current States

32
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1β
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α

β

γ

β

β

Consider NFA G given above with X0 = {0, 1, 2, 3} and Σo = {α, β}
Current state estimation: Given a streaming sequence ω ∈ Σ∗o , track
online possible current states
X̂ (ω) = {x ∈ X | ∃x0 ∈ X0, ∃s ∈ Σ∗ s.t. P(s) = ω and x ∈ δ(x0, s)}

E.g., if we observe ω = αβα, we can infer X̂ (ω) = {2}

Can recursively track possible current states (⇒ online algorithm)
0
1
2
3

 α−→
{

2
3

}
β−→
{

3
} α−→

{
2
}
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Current State Estimation
Formalizing Recursive Computation

Objective: Following an unknown sequence of events s ∈ Σ∗, resulting
in a sequence of observations ω = P(s) ∈ Σ∗o , obtain current state
estimates, i.e.,

X̂ (ω) = {x ∈ X | ∃x0 ∈ X0, ∃s′ ∈ Σ∗ s.t. P(s′) = ω and x ∈ δ(x0, s′)}

Reachable set of states under a single observation: For X ′ ⊆ X ,
σo ∈ Σo ∪ {ε}, we let the set of states reachable from X ′ “via
observation σo" (or “no observation" when σo = ε) be

R(X ′, σo) = {x ∈ X | ∃x ′ ∈ X ′,∃s ∈ Σ∗ s.t. P(s) = σo and x ∈ δ(x ′, s)}

Given ω = σi1σi2 ...σik ∈ Σ∗o and σik+1 ∈ Σo, we can obtain the set X̂
recursively as

X̂ (ε) = R(X0, ε) “unobservable reach UR(X0)"
X̂ (ωσik+1 ) = R(X̂ (ω), σik+1 )

Need: Knowledge of system model or R(X ′, σo) for X ′ ⊆ X and σo ∈ Σo
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Observer (Current-State Estimator) Construction
Tracking State Estimates Following Any Sequence of Observations

32
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{0, 1, 2, 3}

{1, 2, 3} {2, 3}
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Sequence of observations αβα leads us to state {2}
(as seen earlier)
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Observer Limitations
No Tracking of State Sequences Following Sequences of Observations

32
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Sequences of states matching ββ (which leads to {1, 2, 3})
0→ 1→ 1→ 1
1→ 1→ 1
0→ 1→ 1→ 2
1→ 1→ 2
3→ 3→ 3

Current-state estimator does not track state sequences 23 / 47



Formal Construction of Observer
Determinizing an NFA [Cassandras and Lafortune, 2008]

Given: NFA G = (X ,Σ, δ,X0) with observable events Σo (Σo ⊆ Σ)

Observer (or Current-State Estimator): Deterministic finite automaton
Gobs = (Qobs,Σo, δobs,Q0,obs) constructed as follows:

1 Qobs ⊆ 2X , i.e., each observer state qobs ∈ Qobs is associated with
a unique subset of states of the given NFA G, i.e., qobs ⊆ X

2 Initial state is Q0,obs = R(X0, ε) (unobservable reach of X0)
3 From any state qobs ∈ Qobs (recall qobs ⊆ X ) of the current-state

estimator, the next state for any σo ∈ Σo is given by

δobs(qobs, σo) = R(qobs, σo)

Observer captures the set of possible current states in G following a
sequence of observations ω ∈ Σ∗o via

X̂ (ω) = δobs(Q0,obs, ω)

Note: Observer not needed for online state estimation, but can be
convenient for verification of certain properties (in some cases,
verification may be possible via less complex constructions)
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Current-State Opacity
Formal Definition and Verification [Saboori and CNH, 2007, 2011]

Given: NFA G = (X ,Σ, δ,X0) with observable events Σo (Σo ⊆ Σ) and
subset of secret states S (S ⊆ X )

Current-state opacity requires that an external observer can never be
certain that system state is within the set of secret states S
[At least one state outside S is possible; relates to “possible innocence"
in anonymity protocols]

Current-state opacity [Saboori and CNH, 2007, 2011]: For all s ∈ L(G),
for all x0 ∈ X0 such that δ(x0, s) 6= ∅, it holds
{δ(x0, s) ⊆ S} ⇒ {∃t ∈ Σ∗, ∃x ′0 ∈ X0, {P(t) = P(s), δ(x ′0, t) * S}}

Verification using an observer: G is current-state opaque with respect to
a set of secret states S, S ⊂ X , if and only if

∀qobs ∈ Qobs, we have qobs ∩ (X \ S) 6= ∅
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Verification of Current-State Opacity
Example

2

1

4

3 5

a a, b

b a

a

c

ca, c

{1, 2}

{2, 4} {3, 4}

{3, 5}{3}{5}{4}

a b

abac

a a a

c

c

a, cc

c

X0 = {1, 2}, Σo = Σ = {a, b, c}

Not current-state opaque wrt S = {3} or S = {4} or S = {5}

Current-state opaque wrt S = {1} or S = {2}

Consider S = {4}: sequence of observations ac reveals that current
state is 4, however, remaining behavior is not opacity violating

Enforcement of opacity via (i) appropriate control (supervisory control)
or (ii) obfuscation of observations (sensor manipulation)
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Talk Outline

Introduction and Motivation
1 Opacity as a privacy notion
2 Motivating examples

Observation Models; Language-Based and State-Based Opacity

Current-State Opacity and its Verification
1 Current-state estimation
2 Formal definition of current-state opacity
3 Verification using observer (current-state estimator)

Initial-State Opacity and its Verification
1 Initial-state estimation
2 Formal definition of initial-state opacity
3 Verification using initial-state estimator

Other State-Based Notions of Opacity

Ongoing Research and Challenges
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Initial State Estimation
Example of Recursive Computation of Possible Initial States

0 1 4

2

3

β β

α β
δuo

α

α

Consider NFA G with X0 = {0, 1, 2, 3, 4} and Σo = {α, β}, Σu = {δuo}
Initial state estimation: Given a streaming sequence ω ∈ Σ∗o , track
online possible initial states
X̂0(ω) = {x0 ∈ X0 | ∃s ∈ Σ∗ s.t. P(s) = ω and δ(x0, s) 6= ∅}
Key idea: Track possible pairs (xi , xc) of an initial state xi ∈ X0 and a
matching current state xc ∈ X

For example, if we observe ω = αβα, we can recursively obtain

(0, 0)
(0, 2)
(1, 1)
(2, 2)
(3, 3)
(4, 4)


α−→


(0, 2)
(0, 3)
(2, 2)
(4, 4)


β−→
{

(0, 4)
} α−→

{
(0, 4)

}
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Initial-State Estimation Example
Tracking Initial State Estimates Following Sequences of Observations

Observation: Nothing

Matching Pairs of (Initial, Current) States:
{(0, 0), (0, 2), (1, 1), (2, 2), (3, 3), (4, 4)}

Initial State Estimate: {0, 1, 2, 3, 4}

0 1 4

2

3

β β

α β
δuo

α

α
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Initial-State Estimation Example (2)
Tracking Initial State Estimates Following Sequences of Observations

Observation: β

Matching Pairs of (Initial, Current) States: {(0, 1), (1, 4), (3, 4)}

Initial State Estimate: {0, 1, 3}

0 1 4

2

3

β β

α β
δuo

α

α
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Initial-State Estimation Example (3)
Tracking Initial State Estimates Following Sequences of Observations

Observation: ββ

Matching Pairs of (Initial, Current) States: {(0, 4)}

Initial State Estimate: {0}

0 1 4

2

3

β β

α β
δuo

α

α
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Initial-State Estimator Construction
Induced State Mappings and Composition
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Verification of Initial-State Opacity

Initial-state estimates are estimates of the initial
state that are consistent with the sequence of
observations
A system is initial-state opaque if and only if,
following any possible sequence of observations, no
initial-state estimate falls strictly within secret states
Initial-State Estimator (ISE): Deterministic finite
automaton which captures the effect of any
sequence of observations on initial state estimates
Each state of initial state estimator is associated
with a state mapping
A state mapping stores a subset of 2-tuples of states
such that: first (second) element denotes a state
from which a sequence of events (that generates a
given sequence of observations) can originate (end)

State mappings can be composed to summarize the
net effect of the concatenation of two sequences of
observations
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System specifications:

X0 = X = {0, 1, 2, 3, 4}
Σ = {α, β, δuo}
Σu = {δuo}

Induced State Mappings:

mα = {(0, 2), (0, 3), (2, 2), (4, 4)}

mβ = {(0, 1), (1, 4), (3, 4)}

mαβ can be obtained via appropriate composition of mα and mβ

mαβ = {(xiα, xcβ) | ∃xcα = xiβ s.t. (xiα, xcα) ∈ mα and (xiβ , xcβ) ∈ mβ}
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Initial-State Estimator Construction
Example

31
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Example of ISE Construction
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↵, � ↵, �

ISE has O(2N2
) worst-case complexity (N = |X |)

Can be used to verify initial state opacity
E.g., G is not initial state opaque with respect to S = {1}
(because �↵(↵ + �)⇤ reveals that initial state was 1)
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ISE has O(2N2
) worst-case complexity (N = |X |)

Can be used to determine both initial and current state
E.g., if βα(α + β)∗ is observed the initial state was 1, whereas current
state could be any state in X
Property: Refinement of set of possible initial states as more
observations become available
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Formal Construction of Initial-State Estimator
Tracking Pairs of Starting and Final States [Saboori and CNH, 2009; 2013]

Given: NFA G = (X ,Σ, δ,X0) with observable events Σo (Σo ⊆ Σ)

Let mσo ⊆ X × X denote the induced state mapping associated with σo

Initial-State Estimator: Deterministic finite automaton
Giobs = (Qiobs,Σo, δiobs,Q0,iobs) constructed as follows:

1 Qiobs ⊆ 2X×X , i.e., each initial-state estimator state qiobs ∈ Qiobs is
associated with a unique subset of pairs of states of the form
(xi , xc) where xi is a possible initial state and xc is a corresponding
possible current state

2 Initial state is Q0,iobs = ∪x0∈X0 {{x0} × R(x0, ε)} (each x0 ∈ X0 is
paired with all states in R(x0, ε) that can be reached from x0 via
zero, one, or more unobservable transitions)

3 From any state qiobs ∈ Qiobs (recall qiobs ⊆ X × X ) of the
initial-state estimator, the next state for any σo ∈ Σo is captured by

δiobs(qiobs, σo) = qiobs ◦mσo

Initial-state estimator captures the set of possible initial states in G
following a sequence of observations ω ∈ Σ∗o via

X̂0(ω) = {xi ∈ X0 | (xi , xc) ∈ δiobs(Q0,iobs, ω)}
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Initial-State Opacity
Formal Definition and Verification [Saboori and CNH, 2008]

Given: NFA G = (X ,Σ, δ,X0) with observable events Σo (Σo ⊆ Σ) and
subset of secret states S0 (S0 ⊆ X0)

Initial-state opacity requires that an external observer can never be
certain that system initial state is within the set of secret initial states S0

[For all observation sequences, at least one state outside S0 is possible]

Initial-State Opacity [Saboori and CNH, 2008]: For all s ∈ L(G), for all
x0 ∈ S0, it holds
{δ(x0, s) 6= ∅} ⇒ {∃t ∈ Σ∗,∃x ′0 ∈ (X0 \ S0), {P(t) = P(s), δ(x ′0, t) 6= ∅}}

Verification using an initial-state estimator
Giobs = (Qiobs,Σo, δiobs,Q0,iobs)

For qiobs ∈ Qiobs, let I(qiobs) = {xi ∈ X0 | (xi , xc) ∈ qiobs}; G is initial-state
opaque if and only if

∀qiobs ∈ Qiobs, we have I(qiobs) ∩ (X0 \ S0) 6= ∅
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Verification of Initial-State Opacity
Example
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ISE has O(2N2
) worst-case complexity (N = |X |)

Can be used to verify initial state opacity
E.g., G is not initial state opaque with respect to S = {1}
(because �↵(↵ + �)⇤ reveals that initial state was 1)
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Not initial-state opaque wrt S0 = {0} (e.g., αα(α + β)∗ reveals initial
state was 0)

Not initial-state opaque wrt S0 = {1} (e.g., βα(α + β)∗ reveals initial
state was 1)

Initial-state opaque wrt S0 = {2} or S0 = {3} or S0 = {2, 3}
Enforcement of initial-state opacity via (i) appropriate control
(supervisory control) or (ii) obfuscation of observations (sensor
manipulation)
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Recursive State Estimation
State Mappings, Composition, Concatenation [CNH, 2020]

A state mapping m ⊆ X × X contains pairs of the form (xi1 , xi2 ) where
xi1 (xi2 ) can be thought as current (next) state

State mappings m1,m2 ⊆ X × X can be composed (to generate a new
state mapping) or concatenated (to generate a trellis diagram) as

m1 ◦m2 = {(xi1 , xi3 ) | ∃xi2 ∈ X s.t. (xi1 , xi2 ) ∈ m1 and (xi2 , xi3 ) ∈ m2}
m1 •m2 = {(xi1 , xi2 , xi3 ) | ∃(xi1 , xi2 ) ∈ m1, (xi2 , xi3 ) ∈ m2}

Graphical depiction of composition and concatentation (arrows connect
a state xi1 ∈ X with another state xi2 ∈ X )
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Recursive State Estimation
Output State Mappings and Induced Trellis Diagrams

Each observable event σo ∈ Σo can be associated with a state mapping

mσo = {(xc , xn) | ∃s ∈ Σ∗ s.t. P(s) = σo and xn ∈ δ(xc , s)}

State mappings corresponding to a sequence of observable events,
ω = σi1σi2 ...σik ∈ Σ∗o can be concatenated as mσi1

•mσi2
• ... •mσik

Resulting construction captures matching sequences of states

First	
  Observa,on	
  

Second	
  Observa,on	
  

Third	
  Observa,on	
  

Arrows represent (possibly different) sequences of events that generate
the observation at the corresponding stage
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Current State Estimation
Prunning of Trellis Diagrams

Trellis diagrams can be pruned from parts not useful for task at hand

Current state estimation only needs latest stage

First	
  Observa,on	
  

Second	
  Observa,on	
  

Third	
  Observa,on	
  

Results in earlier recursive current state estimation procedure

One can also annotate possible current states with additional
information (e.g., a posteriori probabilities for current states)
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Initial State Estimation
Prunning of Trellis Diagram

Initial state estimation only needs initial stage and latest stage

First	
  Observa,on	
  

Second	
  Observa,on	
  

Third	
  Observa,on	
  

First	
  Observa,on	
  

Second	
  Observa,on	
  

Third	
  Observa,on	
  

Reduced construction (on the right) captures earlier recursive initial
state estimation procedure

Again, one can annotate possible initial/current states with additional
information (e.g., a posteriori probabilities for initial states)
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Opacity in DES
Ongoing Research and Current Challenges

Extensions to other DES:
1 Petri net models (and other purely event-driven systems)
2 Stochastic systems (stochastic notions of opacity)
3 Timed systems (timed notions of opacity)

Extensions to Cyberphysical systems:
1 Quantifying opacity (measures for opacity)
2 Appropriate notions of opacity and their verification

Extensions to distributed/decentralized observation settings
1 Role of modularity and/or other system structure
2 Resiliency to transmission delays, packet drops, errors in

communication exchanges, faulty/malicious components

Opacity Enforcement Strategies
1 Supervisory control
2 Obfuscation
3 Game Formulations
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Opacity in DES
Further Reading

C. N. Hadjicostis, Estimation and Inference in Discrete Event Systems,
Springer, 2020 (Chapters 4 and 8).

J. Romain, J.-J. Lesage, and J.-M. Faure, “Overview of discrete event
systems opacity: Models, validation, and quantification," Annual
Reviews in Control, 41: 135–146, 2016.

S. Lafortune, F. Lin, and C. N. Hadjicostis, “On the history of
diagnosability and opacity in discrete event systems," Annual Reviews
in Control, 45: 257–266, 2018.
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